Skip to main content
Log in

Facile electrochemical detection of morpholine in boiler water with carbon nanostructures: a comparative study of graphene and carbon nanotubes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Two electrochemical sensors based on modified glassy carbon electrodes with carbon nanostructures as graphene (GCE–EG) and carbon nanotubes (GCE–CNT) were evaluated for morpholine analysis. The carbon nanostructures were obtained and characterized using X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and cyclic voltammetry. All spectroscopic and microscopic techniques confirmed the procurement of graphene and CNT. The electrochemical studies proved the efficient behaviour of both electrodes GCE–EG and GCE–CNT in sensing and detection of morpholine via differential pulse voltammetry. The area of the anodic peaks was correlated with the concentration of the analyte. It was observed that the implementation of a thin film of EG and CNT on the GCE promoted the electrocatalytic activity towards morpholine electro-oxidation, and a considerable increase in the corresponding oxidation peak was observed in both cases. Theoretical detection limits of 1.0 and 1.3 mg l–1 were obtained for GCE–EG and GCE–CNT, respectively. These merit figures, both satisfactorily meet the requirements of the Food and Drug Administration for morpholine detection in real applications. Finally, the sample recovery for GCE–EG and GCE–CNT sensors were, respectively, 107 and 103%, at 20.0 mg l–1 morpholine in the boiler water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kuchowicz E and Rydzyński K 2011 Appl. Occup. Environ. Hyg. 13 113

    Article  Google Scholar 

  2. Moger M, Satam V, Govindaraju D R C, Paniraj A S, Gopinath V S, Hindupur R M et al 2014 J. Braz. Chem. Soc. 25 104

    CAS  Google Scholar 

  3. Kourounakis A P, Xanthopoulos D and Tzara A 2020 Med. Res. Rev. 40 709

    Article  CAS  Google Scholar 

  4. Ghafari S, Ranjbar S, Larijani B, Amini M, Biglar M, Mahdavi M et al 2019 Int. J. Biol. Macromol. 135 978

    Article  CAS  Google Scholar 

  5. Zhao C, Zhou J, Gu Y, Pan E, Sun Z, Zhang H et al 2020 Sci. Total Environ. 738 139713

    Article  CAS  Google Scholar 

  6. Rath S and Canaes L S 2009 Quim. Nova 32 2159

    Article  CAS  Google Scholar 

  7. Shea T E J 1939 J. Ind. Hyg. Toxicol. 21 236

    CAS  Google Scholar 

  8. Rocha L R, D’Elia E, Medeiros R A and Tarley C R T 2018 Anal. Lett. 52 1083

    Article  Google Scholar 

  9. Kolliopoulos A V, Metters J P and Banks C E 2015 Environ. Sci. Water Res. Technol. 1 40

    Article  CAS  Google Scholar 

  10. Gilbert R, Rioux R and Saheb S E 2002 Anal. Chem. 56 106

    Article  Google Scholar 

  11. Lamarre C, Gilbert R and Gendron A 1989 J. Chromatogr. A 467 249

    Article  CAS  Google Scholar 

  12. Joseph M, Kagdiyal V, Tuli D K, Rai M M, Jain S K, Srivastava S P et al 1993 Chromatographia 35 173

    Article  CAS  Google Scholar 

  13. Vatsala S, Bansal V, Tuli D K, Rai M M, Jain S K, Srivastava S P et al 1994 Chromatographia 38 456

    Article  CAS  Google Scholar 

  14. Pietsch J, Hampel S, Schmidt W, Brauch H-J and Worch E 1996 Fresenius. J. Anal. Chem. 355 164

    CAS  Google Scholar 

  15. Luong J, Shellie R A, Cortes H, Gras R and Hayward T 2012 J. Chromatogr. A 1229 223

    Article  CAS  Google Scholar 

  16. Chen D, Miao H, Zou J, Cao P, Ma N, Zhao Y et al 2015 J. Agric. Food Chem. 63 485

    Article  CAS  Google Scholar 

  17. Cao M, Zhang P, Feng Y, Zhang H, Zhu H, Lian K et al 2018 J. Anal. Methods Chem. 2018 1

    Google Scholar 

  18. Beitollahi H, Dourandish Z, Tajik S, Ganjali M R, Norouzi P and Faridbod F 2018 J. Rare Earths 36 750

    Article  CAS  Google Scholar 

  19. Paiva V M, Assis K L S C, Archanjo B S, Senna C A, Ribeiro E S and D’Elia E 2021 Bull. Mater. Sci. 44 14

    Article  Google Scholar 

  20. Pletcher D, Greff R, Peat R, Peter L M and Robinson J 2010 in Instrumental methods in electrochemistry (Cambridge: Woodhead Publishing) p 15

  21. Edwards G A, Bergren A J and Porter M D 2007 in Handbook of electrochemistry (ed C Zoski) (Amsterdam: Elsevier) p 295

  22. Ratajczak P, Suss M E, Kaasik F and Béguin F 2019 Energy Storage Mater. 16 126

    Article  Google Scholar 

  23. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Le Q V, Jang H W et al 2020 RSC Adv. 10 15406

    Article  CAS  Google Scholar 

  24. Thi Mai Hoa L 2018 Diam. Relat. Mater. 89 43

    Article  CAS  Google Scholar 

  25. Patra S, Roy E, Madhuri R and Sharma P K 2016 Anal. Chim. Acta 918 77

    Article  CAS  Google Scholar 

  26. Mazzocchia C V, Bestetti M, Acierno D and Tito A 2010 Eur. Patent 2213369A1

  27. Hou P X, Liu C and Cheng H M 2008 Carbon N. Y. 46 2003

    Article  CAS  Google Scholar 

  28. Ribani M, Bottoli C B G, Collins C H, Jardim I C S F and Melo L F C 2004 Quim. Nova 27 771

    Article  CAS  Google Scholar 

  29. U.S. Departament of Health and Human Services 1996 Q2B Validation of analytical procedures: methodology. http://www.fda.gov/cder/guidance/index.htm or http://www.fda.gov/cber/guidelines.htm

  30. Rego E C P 2016 Orientação sobre validação de métodos analíticos - DOQ-CGCRE-008. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) 1

  31. Dennison J, Holtz M and Swain G 1996 Spectroscopy 11 38

    CAS  Google Scholar 

  32. Ferrari A C 2007 Solid State Commun. 143 47

    Article  CAS  Google Scholar 

  33. Castro K L S, Curti R V, Araujo J R, Landi S M, Ferreira E H M, Neves R S et al 2016 Thin Solid Films 610 10

    Article  CAS  Google Scholar 

  34. Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51

    Article  CAS  Google Scholar 

  35. Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235

    Article  CAS  Google Scholar 

  36. Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G and Saito R 2010 Nano Lett. 10 751

    Article  CAS  Google Scholar 

  37. Antunes E F, Lobo A O, Corat E J, Trava-Airoldi V J, Martin A A and Veríssimo C 2006 Carbon N. Y. 44 2202

    Article  CAS  Google Scholar 

  38. Lesiak B, Kövér L, Tóth J, Zemek J, Jiricek P, Kromka A et al 2018 Appl. Surf. Sci. 452 223

    Article  CAS  Google Scholar 

  39. Al-Gaashani R, Najjar A, Zakaria Y, Mansour S and Atieh M A 2019 Ceram. Int. 45 14439

    Article  CAS  Google Scholar 

  40. dos Assis K L S C, Archanjo B S, Achete C A and D’Elia E 2020 Mater. Res. 23 20190513

    Article  Google Scholar 

  41. Erden P E, Taşdemir I H, Kaçar C and Kiliç E 2014 Int. J. Electrochem. Sci. 9 2208

    Google Scholar 

  42. de Oliveira S M, Siguemura A, Lima H O, Souza F C, Magalhães A A O, Toledo R M et al 2014 J. Braz. Chem. Soc. 25 1399

    Google Scholar 

  43. de Oliveira S M, de Carvalho F S, Lima H O, Maciel R, Toledo R M, Augusto A et al 2015 Int. J. Electrochem. Sci 10 5013

    Google Scholar 

  44. Stevens W H and Skov K 1965 Analyst 90 182

    Article  CAS  Google Scholar 

  45. Tehrani R M A and Ab Ghani S 2012 Electrochim. Acta 70 153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane D’Elia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, S.M., dos Santos Castro Assis, K.L., Paiva, V.M. et al. Facile electrochemical detection of morpholine in boiler water with carbon nanostructures: a comparative study of graphene and carbon nanotubes. Bull Mater Sci 45, 100 (2022). https://doi.org/10.1007/s12034-022-02669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02669-6

Keywords

Navigation